
... ...

...

...

... ...

..

®

technical whitepaper

PEPPERDATA IN MULTI-TENANT
ENVIRONMENTS

June 2015

WHITEPAPER

pepperdata.com
®

SUMMARY OF WHAT’S WRITTEN IN THIS DOCUMENT
If you are short on time and don’t want to read the whole document, here’s what you need to know:

•  Pepperdata facilitates multi-tenancy and eliminates the need to physically separate workloads onto different clusters via
our SLA enforcement which is configured via policies.

•  Pepperdata policies work in combination with YARN to ensure that jobs behave as you intended. YARN forgets about
jobs once they are running on the cluster, but Pepperdata’s is watching in real-time and will slow down low-priority jobs
on the contended resource to ensure high-priority jobs continue unimpeded.

•  Pepperdata’s SLA enforcement is different from cgroups in that our policies are expressed in terms of minimums, rather
than maximums with cgroups, allowing you to guarantee high-priority jobs a minimum of the cluster’s resources, but only
when needed. If there is no contention on a resource, then the low-priority job is free to use as much of that resource
it needs. With cgroups, the maximum is enforced at all times, unnecessarily clamping down on resources even when the
cluster is not busy.

•  Pepperdata’s fine-grained visibility into how a cluster’s resources are being utilized allows operators and users to pinpoint
ways to improve jobs so that over time, things run faster and more smoothly.

Now read on for more detail...

INTRODUCTION

Multi-tenancy refers to multiple business users and processes sharing a common set of resources, such as a Hadoop cluster. In these
kinds of environments, organizations get a central system to store and work with all data of all types and formats, with the flexibility
to run a variety of workloads including batch processing, analytic SQL, stream processing, enterprise search, and machine learning. The
overarching challenge with all of these mixed workloads is the impact they have when contending for the four major resources: CPU,
RAM, disk i/o, and network bandwidth. This document was written to explain how Pepperdata provides reliable multi-tenancy on Hadoop
clusters.

PEPPERDATA OVERVIEW

Pepperdata is an enterprise software product that installs in
about 20 minutes on your existing Hadoop cluster without any
modifications to scheduler, workflow, or job submission processes.
Once installed, Pepperdata provides you with three immediate
benefits:

VISIBILITY
Captures an unprecedented level of detail on cluster resource usage.
Pepperdata collects 200+ metrics in real-time for the four resources
CPU, RAM, disk I/O, and network for any given job or task, by user
or group or queue. This allows operators to quickly identify what
job is causing a problem and which user submitted it. And it allows
users to see what and how their jobs are doing on the cluster while
they are running.

PEPPERDATA REAL-TIME ARCHITECTURE
Financial
ReportProductETLAnalystDeveloper

Pepperdata Dashboard

Cluster Configuration

EXISTING HADOOP CLUSTER

JobTracker / YARN Resource Manager

MapReduce, HBase, Spark, etc

Policies

WHITEPAPER

pepperdata.com
®

CONTROL
Enables you to implement service-level policies that guarantee on-time completion of high-priority jobs.
Pepperdata senses contention among the four resources in real-time and will slow down low-priority jobs just enough to ensure the high-
priority SLAs are always maintained.

CAPACITY
Increases cluster throughput by 30-50%.
Pepperdata knows the actual true hardware resource capacity of your cluster and allows more tasks to run on nodes that have free
resources at any given moment. In many instances jobs will run much faster because Pepperdata will dynamically allow them to use more
of the true resource on the cluster when it is available.

PEPPERDATA MULTI-TENANCY

HOW PEPPERDATA ELIMINATES HAVING TO PHYSICALLY ISOLATE WORKLOADS
It only takes one process to interfere with a production high-priority job on your Hadoop cluster. Once this starts happening,
organizations are forced into building new additional clusters to separate the workloads. Over time it is not uncommon for more and more
clusters to be added. First production jobs get their own cluster. Ad-hoc jobs get another. Then another cluster is built for the job or set
of jobs that are so critical, they need to be isolated. HBase and MapReduce jobs contend for the same resources, so HBase gets its own
cluster. Data loading SLAs start getting compromised so ETL gets its own cluster. Of course this is a very inefficient and expensive way of
dealing with mixed workloads and defeats the goal of achieving a true multi-tenant Hadoop environment.

Pepperdata eliminates the need to physically isolate mixed workloads because it is able to watch everything running on the cluster in
real-time and enforce SLAs that you set up via simple policies. Administrators can set policies for a user, job group, queue, a job, or even
a particular application. These policies guarantee that high-priority jobs and applications get a minimum amount of resources. Some
of these may use a lot of memory. If they use too much memory, it can cause swapping on worker nodes, slowing down other jobs and
applications running on the cluster. Pepperdata can be used to limit the amount of memory used in order to protect nodes in the cluster
from swapping. Here are a few examples of policies you can set with Pepperdata.

EXAMPLE 1 - PROD AND DEV RUNNING ON THE SAME CLUSTER
Example 1 configures two queue-level job groups. The two
job groups are named prod and dev. These names should
match the associated job queue names that exist on the
cluster.

Using the minPercent key, the example specifies minimum
resource percentages to each of the two job groups, 60% and
10%, respectively.

<configuration>

 <queue>

 <name>prod</name>

 <minPercent>60</minPercent>

 </queue>

 <queue>

 <name>dev</name>

 <minPercent>10</minPercent>

 </queue>

</configuration>

WHITEPAPER

pepperdata.com
®

EXAMPLE 2 - HBASE AND MAPREDUCE RUNNING ON
THE SAME CLUSTER
Example 2 configures two job groups with the first group
using the program-level group with the reserved name
HBase, which will internally map to the Java class name
of the HBase region server programs. This lets all region
server instances running on the cluster be recognized as
members of the program group with access to a minimum
of 60% of the cluster resources. With the protected flag,
the HBase group’s resource use beyond the minimum will be
protected from other groups’ interference when the resource
in question is contended. The second job group uses the
default job group. In this example, all MapReduce jobs will belong to this

default group since there is no other job group configured.

EXAMPLE 3 - MEMORY PROTECTION
Example 3 shows how you can set memory limits. The
memory limit can be set on the resident set size (RSS) or on
the total virtual memory (VM) size of individual tasks or users.
Here we are setting Maximum RSS size and Maximum VM
size to 8 GB only for tasks submitted by user prod.

Let’s explain a little more about how minimum resource percentages work with Pepperdata. Jobs running in a job group may not actually
use the guaranteed minimums at a given moment. For instance, the production jobs could be in a phase that only consumes CPU, but
does not use disk or network. The Pepperdata software monitors actual bandwidth usage and shifts the unused amount to other job
groups with more demand. So in Example 1, if the jobs in the dev group actually demand more than 10% while the prod group is not
using their share, the dev group can receive more than the 10% bandwidth you specified in the configuration. Then if prod begins to
demand their previously underutilized resources, then they will get back the guaranteed bandwidth amounts.

HOW PEPPERDATA WORKS WITH YARN TO ENFORCE MULTI-TENANCY

YARN stands for “Yet Another Resource Negotiator”
and was introduced as part of Hadoop 2.0. YARN takes
the resource management capabilities that were in
MapReduce and packages them so they can be used
by new engines. With YARN, you can now run multiple
applications in Hadoop, all sharing a common resource
management.

YARN coordinates consumption and usage reservations
to ensure resources are fairly allocated and used.

<configuration>

<user>

<name>prod</name>

<taskMemory>

 <rssLimitBytes>8000000000</rssLimitBytes>

 <vmLimitBytes>8000000000</vmLimitBytes>

</taskMemory>

</user>

</configuration>

<configuration>

 <program>

 <name>HBase</name>

 <minPercent>60</minPercent>

 <protected>true</protected>

 </program>

 <default>

 <minPercent>30</minPercent>

 </default>

</configuration>

WHITEPAPER

pepperdata.com
®

This approach is sometimes referred to as dynamic partitioning. With the YARN and your Hadoop Scheduler, you can assign minimum
guaranteed capacities to groups of users or applications. For instance, in an enterprise with three business units that share a cluster,
each business unit can be assigned to a Scheduler queue and guaranteed a minimum capacity. The Scheduler was designed to allow
significantly higher cluster utilization while still providing predictability for Hadoop workloads, while sharing resources in a predictable
and simple manner, using the common notion of job queues.

But once a container is running on the cluster, YARN and the Scheduler forgets about it. YARN is not watching the jobs or applications in
real-time once they are running. As a result, you could have a job start thrashing your disks or consuming too much network and YARN
isn’t able to do anything about it. With Pepperdata you are able to set policies that will absolutely enforce SLAs on the cluster. Because
Pepperdata is actually watching in real-time, if it senses contention for a given resource, Pepperdata is able to reach in and, based on the
policies that you have set, will micro-pause the low-priority job in real-time, which is something YARN is unable to do.

HOW PEPPERDATA IS DIFFERENT FROM CGROUPS

As opposed to dynamic partitioning as described above for YARN, there is also an approach that’s a static partitioning model, which
leverages a technology available on modern Linux operating systems called container groups, or cgroups. Cgroups provide a mechanism
for managing and monitoring system resources by partitioning things like CPU time, system memory, disk i/o and network bandwidth
into groups, and then assigning tasks to those groups. Cgroups limit the maximum amount CPU/memory/disk, and network. Pepperdata
deals with minimums, which is much more useful. Let’s say you run two jobs and they use the same resources. In order to pick a winner
with cgroups, you have to limit the low-priority job (by re-running it and changing its config) instead of talking about the high-priority
job and saying it gets a minimum guaranteed amount of system resource. That’s the key difference between minimums and maximums.
In order to use maximums, it’s up to the Hadoop operator to correctly limit every potentially offending low-priority job as opposed to
setting minimum guarantees for the high-priority jobs. And then there is the issue of knowing what to set the low-priority jobs’ values to
with cgroups. The operator basically needs to guess, and then via trial and error, try to get the values right across the different resources
to try to minimize impact to the high-priority job. And currently, cgroups’ disk block I/O subsystem does not work with buffered write
operations. It is primarily targeted at direct I/O, although it works for buffered read operations. Hadoop only works with buffered I/O, so
you can’t rely on cgroups to address Hadoop write operations. In addition, cgroups only addresses local I/O operations, and with Hadoop
these are not necessarily the most important ones.

Pepperdata has patented algorithms that look at all the resources second-by-second, in real-time, and dynamically make adjustments.
With cgroups, it is set it and forget it. To even slightly approximate what Pepperdata does using cgroups, you’d have to manually change
the cgroup setting constantly and it would have to be for all the low-priority jobs (which there are a lot more of those than there are
high-priority jobs on any given cluster) which of course is an impossible task. And with Pepperdata, if there is no contention for a given
resource, low-priority jobs are able to use as much of the resources as the need, unlike cgroups where the low-priority job is pegged for a
maximum regardless of what’s actually happening on the cluster.

HOW PEPPERDATA IMPROVES MULTI-TENANCY VIA MONITORING

Pepperdata provides visibility into a particular job or application and what it is doing while it is running on the cluster. Operators and
users are able to quickly identify unforeseen situations such as an errant job or process that is overwhelming an allotted resource.
This allows investigation and possible correction to something like a poorly constructed ad-hoc query. The effect is smoother cluster
operations over time, which is of course very important in a multi-tenant environment. Pepperdata collects 200+ metrics in real-time,
every 3 to 5 seconds depending on the metric, that all boil down to different views on CPU, RAM, disk I/O, and network usage. You can
break these down by user, group or queue to pinpoint exactly where a problem is occurring. As an example, the image below shows two
charts produced by the Pepperdata Dashboard for CPU and RAM with time-series data color-coded by job.

WHITEPAPER

pepperdata.com
®

HOW PEPPERDATA HELPS WITH CHARGEBACKS

Another common requirement for multi-tenant environments is the ability to meter the cluster usage of different tenants. One of the key
business drivers of multi-tenancy is the aggregation of resources to improve utilization and the multiple participants will build internal
budgets to finance this resource pool. In many organizations, IT uses the metered information to drive chargeback models and illustrate
compliance. Pepperdata provides historical and trending usage of the entire Hadoop compute layer (CPU, RAM, disk I/O, and network
usage). Beyond just and with this information —which can be exported in common formats, such as Microsoft Excel, to financial modeling
applications—can provide a strong foundation for an internal chargeback model. These metering capabilities can also facilitate capacity
planning and accurate budgeting for growth of the shared platform, thus insuring that IT teams allocate sufficient resources in line with
cluster demand. Below is an image showing a table from the Pepperdata Dashboard that shows who are the biggest users of the system.

WHITEPAPER

pepperdata.com
®

Copyright © 2014 Pepperdata, Inc. All rights reserved. PEPPERDATA and the logo are registered trademarks of Pepperdata, Inc. The other
trademarks are trademarks of Pepperdata, Inc.
Pepperdata’s products and services may be covered by U.S. Patent Nos. 8,706,798 and 8,849,891, as well as other patents that are
pending.

Below is another image from the Pepperdata Dashboard that shows CPU utilization for a day, a week and a month, sorted from highest to
lowest on percent of utilization. This is a handy visualization to determine capacity utilization of the cluster. Pepperdata has similar views
for memory and disk I/O utilization.

HOW PEPPERDATA’S DYNAMIC CAPACITY MANAGEMENT BENEFITS MULTI-TENANCY

For multi-tenant environments, over time, more and different parts of the organization will adopt the Hadoop central service. In fact,
that is one of the goals of a central service - to make it easier for new groups to use the service. So over time, you may get to the point
where the cluster is busy most of the time. One organization, to deal with all of the traffic and avoid contention with production jobs,
rather than buy additional hardware to deal with the demand, would only allow ad-hoc queries to be run on weekends! By switching
on Pepperdata’s Dynamic Capacity Management, clusters see anywhere from 30-50% and in some cases as high as 70% increase in
throughput. By turning on this feature, it’s as if 30-50% more hardware was added to the cluster. And it means you are getting the
maximum value out of your infrastructure because Pepperdata makes your Hadoop cluster run more efficiently.

CONCLUSION

Hadoop has quickly evolved from a single-workload, data processing platform into the foundation of a comprehensive information
repository serving a wide variety of user communities and applications, data sets and business processes. Pepperdata is making it easier
for enterprises to manage and monitor multi-tenancy Hadoop environments and to realize the full potential of Hadoop infrastructure
investment.

